Regression Wavelet Analysis for Near-Lossless Remote Sensing Data Compression

Sara Alvarez-Cortes*, Joan Serra-Sagrista, Joan Bartrina-Rapesta, Michael W. Marcellin

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

11 Cites (Scopus)

Resum

Regression wavelet analysis (RWA) is one of the current state-of-the-art lossless compression techniques for remote sensing data. This article presents the first regression-based near-lossless compression method. It is built upon RWA, a quantizer, and a feedback loop to compensate the quantization error. Our near-lossless RWA (NLRWA) proposal can be followed by any entropy coding technique. Here, the NLRWA is coupled with a bitplane-based coder that supports progressive decoding. This successfully enables gradual quality refinement and lossless and near-lossless recovery. A smart strategy for selecting the NLRWA quantization steps is also included. Experimental results show that the proposed scheme outperforms the state-of-the-art lossless and the near-lossless compression methods in terms of compression ratios and quality retrieval.

Idioma originalAnglès nord-americà
Número d’article8858042
Pàgines (de-a)790-798
Nombre de pàgines9
RevistaIEEE Transactions on Geoscience and Remote Sensing
Volum58
Número2
DOIs
Estat de la publicacióPublicada - 1 de febr. 2020

Fingerprint

Navegar pels temes de recerca de 'Regression Wavelet Analysis for Near-Lossless Remote Sensing Data Compression'. Junts formen un fingerprint únic.

Com citar-ho