Projectes per any
Resum
Regression wavelet analysis (RWA) is one of the current state-of-the-art lossless compression techniques for remote sensing data. This article presents the first regression-based near-lossless compression method. It is built upon RWA, a quantizer, and a feedback loop to compensate the quantization error. Our near-lossless RWA (NLRWA) proposal can be followed by any entropy coding technique. Here, the NLRWA is coupled with a bitplane-based coder that supports progressive decoding. This successfully enables gradual quality refinement and lossless and near-lossless recovery. A smart strategy for selecting the NLRWA quantization steps is also included. Experimental results show that the proposed scheme outperforms the state-of-the-art lossless and the near-lossless compression methods in terms of compression ratios and quality retrieval.
Idioma original | Anglès nord-americà |
---|---|
Número d’article | 8858042 |
Pàgines (de-a) | 790-798 |
Nombre de pàgines | 9 |
Revista | IEEE Transactions on Geoscience and Remote Sensing |
Volum | 58 |
Número | 2 |
DOIs | |
Estat de la publicació | Publicada - 1 de febr. 2020 |
Fingerprint
Navegar pels temes de recerca de 'Regression Wavelet Analysis for Near-Lossless Remote Sensing Data Compression'. Junts formen un fingerprint únic.Projectes
- 1 Acabat
-
Compresión de datos para constelaciones de satélites en la era del Newspace
Serra Sagrista, J. (PI), Bartrina Rapesta, J. (Investigador/a Principal 2), Cea Dominguez, C. D. (Col.laborador/a), Auli Llinas, F. (Investigador/a), Blanes Garcia, I. (Investigador/a) & Mijares Verdú, S. (Col.laborador/a)
Ministerio de Economía y Competitividad (MINECO)
1/01/19 → 30/09/22
Projecte: Projectes i Ajuts a la Recerca