Regression models: Calculating the confidence interval of effects in the presence of interactions

Adolfo Figueiras, Jose Maria Domenech-Massons, Carmen Cadarso

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

91 Cites (Scopus)

Resum

The main goal of regression analysis (multiple, logistic, Cox) is to assess the relationship of one or more exposure variables to a response variable, in the presence of confounding and interaction. The confidence interval for the regression coefficient of the exposure variable, obtained through the use of a computer statistical package, quantify these relationships for models without interaction. Relationships between variables that present interactions are represented by two or more terms, and the corresponding confidence intervals can be calculated 'manually' from the covariance matrix. This paper suggests an easy procedure for obtaining confidence intervals from any statistical package. This procedure is applicable for modifying variables which are continuous as well as categorical.
Idioma originalAnglès
Pàgines (de-a)2099-2105
RevistaStatistics in Medicine
Volum17
Número18
DOIs
Estat de la publicacióPublicada - 30 de set. 1998

Fingerprint

Navegar pels temes de recerca de 'Regression models: Calculating the confidence interval of effects in the presence of interactions'. Junts formen un fingerprint únic.

Com citar-ho