TY - JOUR
T1 - Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze-thawing by stabilising disulfide bonds
AU - Yeste, Marc
AU - Flores, Eva
AU - Estrada, Efrén
AU - Bonet, Sergi
AU - Rigau, Teresa
AU - Rodríguez-Gil, Joan E.
PY - 2013/8/26
Y1 - 2013/8/26
N2 - One important change the head of boar spermatozoa during freeze-thawing is the destabilisation of its nucleoprotein structure due to a disruption of disulfide bonds. With the aim of better understanding these changes in frozen-thawed spermatozoa, two agents, namely reduced glutathione (GSH) and procaine hydrochloride (ProHCl), were added at different concentrations to the freezing media at different concentrations and combinations over the range 1-2mM. Then, 30 and 240min after thawing, cysteine-free residue levels of boar sperm nucleoproteins, DNA fragmentation and other sperm functional parameters were evaluated. Both GSH and ProHCl, at final concentrations of 2mM, induced a significant (P<0.05) increase in the number of non-disrupted sperm head disulfide bonds 30 and 240min after thawing compared with the frozen-thawed control. This effect was accompanied by a significant (P<0.05) decrease in DNA fragmentation 240min after thawing. Concomitantly, 1 and 2mM GSH, but not ProHCl at any of the concentrations tested, partially counteracted the detrimental effects caused by freeze-thawing on sperm peroxide levels, motility patterns and plasma membrane integrity. In conclusion, the results show that both GSH and ProHCl have a stabilising effect on the nucleoprotein structure of frozen-thawed spermatozoa, although only GSH exerts an appreciable effect on sperm viability. © CSIRO 2013.
AB - One important change the head of boar spermatozoa during freeze-thawing is the destabilisation of its nucleoprotein structure due to a disruption of disulfide bonds. With the aim of better understanding these changes in frozen-thawed spermatozoa, two agents, namely reduced glutathione (GSH) and procaine hydrochloride (ProHCl), were added at different concentrations to the freezing media at different concentrations and combinations over the range 1-2mM. Then, 30 and 240min after thawing, cysteine-free residue levels of boar sperm nucleoproteins, DNA fragmentation and other sperm functional parameters were evaluated. Both GSH and ProHCl, at final concentrations of 2mM, induced a significant (P<0.05) increase in the number of non-disrupted sperm head disulfide bonds 30 and 240min after thawing compared with the frozen-thawed control. This effect was accompanied by a significant (P<0.05) decrease in DNA fragmentation 240min after thawing. Concomitantly, 1 and 2mM GSH, but not ProHCl at any of the concentrations tested, partially counteracted the detrimental effects caused by freeze-thawing on sperm peroxide levels, motility patterns and plasma membrane integrity. In conclusion, the results show that both GSH and ProHCl have a stabilising effect on the nucleoprotein structure of frozen-thawed spermatozoa, although only GSH exerts an appreciable effect on sperm viability. © CSIRO 2013.
KW - sperm cryopreservation.
U2 - 10.1071/RD12230
DO - 10.1071/RD12230
M3 - Article
SN - 1031-3613
VL - 25
SP - 1036
EP - 1050
JO - Reproduction, Fertility and Development
JF - Reproduction, Fertility and Development
ER -