Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations

María J. Cáceres, Stéphane Mischler, José A. Cañizo

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

42 Cites (Scopus)

Resum

We study the asymptotic behavior of linear evolution equations of the type ∂tg=Dg+Lg-λg, where L is the fragmentation operator, D is a differential operator, and λ is the largest eigenvalue of the operator Dg+Lg. In the case Dg=-∂xg, this equation is a rescaling of the growth-fragmentation equation, a model for cellular growth; in the case Dg=-∂x(xg), it is known that λ=1 and the equation is the self-similar fragmentation equation, closely related to the self-similar behavior of solutions of the fragmentation equation ∂tf=Lf.By means of entropy-entropy dissipation inequalities, we give general conditions for g to converge exponentially fast to the steady state G of the linear evolution equation, suitably normalized. In other words, the linear operator has a spectral gap in the natural L2 space associated to the steady state. We extend this spectral gap to larger spaces using a recent technique based on a decomposition of the operator in a dissipative part and a regularizing part. © 2011 Elsevier Masson SAS.
Idioma originalAnglès
Pàgines (de-a)334-362
RevistaJournal des Mathematiques Pures et Appliquees
Volum96
Número4
DOIs
Estat de la publicacióPublicada - 1 d’oct. 2011

Fingerprint

Navegar pels temes de recerca de 'Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations'. Junts formen un fingerprint únic.

Com citar-ho