Quality analysis in N-dimensional lossy compression of multispectral remote sensing time series images

L. Pesquer*, A. Zabala, X. Pons, J. Serra

*Autor corresponent d’aquest treball

Producció científica: Altres contribucions

1 Citació (Scopus)

Resum

This work aims to determine an efficient procedure (balanced between quality and compression ratio) for compressing multispectral remote sensing time series images in a 4-dimensional domain (2 spatial, 1 spectral and 1 temporal dimension). The main factors studied were: spectral and temporal aggregation, landscape type, compression ratio, cloud cover, thermal segregation and nodata regions. In this study, the authors used three-dimensional Discrete Wavelet Transform (3d-DWT) as the compression methodology, implemented in the Kakadu software with the JPEG2000 standard. This methodology was applied to a series of 2008 Landsat-5 TM images that covered three different landscapes, and to one scene (19-06-2007) from a hyperspectral CASI sensor. The results show that 3d-DWT significantly improves the quality of the results for the hyperspectral images; for example, it obtains the same quality as independently compressed images at a double compression ratio. The differences between the two compression methodologies are smaller in the Landsat spectral analysis than in the CASI analysis, and the results are more irregular depending on the factor analyzed. The time dimensional analysis for the Landsat series images shows that 3d-DWT does not improve on band-independent compression.
Idioma originalAnglès nord-americà
TipusConference
DOIs
Estat de la publicacióPublicada - 24 d’ag. 2010

Sèrie de publicacions

NomProceedings of SPIE - The International Society for Optical Engineering
Volum7810
ISSN (imprès)0277-786X

Fingerprint

Navegar pels temes de recerca de 'Quality analysis in N-dimensional lossy compression of multispectral remote sensing time series images'. Junts formen un fingerprint únic.

Com citar-ho