Quadratic systems with an invariant conic having Darboux invariants

Jaume Llibre, Regilene Oliveira

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

4 Cites (Scopus)

Resum

© 2018 World Scientific Publishing Company. The complete characterization of the phase portraits of real planar quadratic vector fields is very far from being accomplished. As it is almost impossible to work directly with the whole class of quadratic vector fields because it depends on twelve parameters, we reduce the number of parameters to five by using the action of the group of real affine transformations and time rescaling on the class of real quadratic differential systems. Using this group action, we obtain normal forms for the class of quadratic systems that we want to study with at most five parameters. Then working with these normal forms, we complete the characterization of the phase portraits in the Poincaré disc of all planar quadratic polynomial differential systems having an invariant conic : f(x,y) = 0, and a Darboux invariant of the form f(x,y)est with s.
Idioma originalAnglès
Número d’article1750033
RevistaCommunications in Contemporary Mathematics
Volum20
Número4
DOIs
Estat de la publicacióPublicada - 1 de juny 2018

Fingerprint

Navegar pels temes de recerca de 'Quadratic systems with an invariant conic having Darboux invariants'. Junts formen un fingerprint únic.

Com citar-ho