Programmability of covariant quantum channels

Martina Gschwendtner, Andreas Bluhm, Andreas Winter

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

10 Cites (Scopus)

Resum

A programmable quantum processor uses the states of a program register to specify one element of a set of quantum channels which is applied to an input register. It is well-known that such a device is impossible with a finite-dimensional program register for any set that contains infinitely many unitary quantum channels (Nielsen and Chuang’s No-Programming Theorem), meaning that a universal programmable quantum processor does not exist. The situation changes if the system has symmetries. Indeed, here we consider group-covariant channels. If the group acts irreducibly on the channel input, these channels can be implemented exactly by a programmable quantum processor with finite program dimension (via teleportation simulation, which uses the Choi-Jamiołkowski state of the channel as a program). Moreover, by leveraging the representation theory of the symmetry group action, we show how to remove redundancy in the program and prove that the resulting program register has minimum Hilbert space dimension. Furthermore, we provide upper and lower bounds on the program register dimension of a processor implementing all group-covariant channels approximately.

Idioma originalAnglès
Número d’article488
Nombre de pàgines24
RevistaQuantum
Volum5
DOIs
Estat de la publicacióPublicada - de juny 2021

Fingerprint

Navegar pels temes de recerca de 'Programmability of covariant quantum channels'. Junts formen un fingerprint únic.

Com citar-ho