TY - JOUR
T1 - Preoperative clinical model to predict myocardial injury after non-cardiac surgery :
T2 - A retrospective analysis from the MANAGE cohort in a Spanish hospital
AU - Urrútia, Gerard
AU - Serrano, Ana Belén
AU - Gomez-Rojo, María
AU - Ureta, Eva
AU - Nuñez, Mónica
AU - Fernández-Félix, Borja
AU - Velasco, Elisa
AU - Burgos, Javier
AU - Popova, Ekaterine
AU - Gomez, Victoria
AU - Del Rey, José Manuel
AU - Sanjuanbenito, Alfonso
AU - Zamora, Javier
AU - Monteagudo, Juan Manuel
AU - Pestaña, David
AU - De La Torre, Basilio
AU - Candela-Toha, Angel
PY - 2021
Y1 - 2021
N2 - Objectives To determine preoperative factors associated to myocardial injury after non-cardiac surgery (MINS) and to develop a prediction model of MINS. Design Retrospective analysis. Setting Tertiary hospital in Spain. Participants Patients aged ≥45 years undergoing major non-cardiac surgery and with at least two measures of troponin levels within the first 3 days of the postoperative period. All patients were screened for the MANAGE trial. Primary and secondary outcome measures We used multivariable logistic regression analysis to study risk factors associated with MINS and created a score predicting the preoperative risk for MINS and a nomogram to facilitate bed-side use. We used Least Absolute Shrinkage and Selection Operator method to choose the factors included in the predictive model with MINS as dependent variable. The predictive ability of the model was evaluated. Discrimination was assessed with the area under the receiver operating characteristic curve (AUC) and calibration was visually assessed using calibration plots representing deciles of predicted probability of MINS against the observed rate in each risk group and the calibration-in-the-large (CITL) and the calibration slope. We created a nomogram to facilitate obtaining risk estimates for patients at pre-anaesthesia evaluation. Results Our cohort included 3633 patients recruited from 9 September 2014 to 17 July 2017. The incidence of MINS was 9%. Preoperative risk factors that increased the risk of MINS were age, American Status Anaesthesiology classification and vascular surgery. The predictive model showed good performance in terms of discrimination (AUC=0.720; 95% CI: 0.69 to 0.75) and calibration slope=1.043 (95% CI: 0.90 to 1.18) and CITL=0.00 (95% CI: -0.12 to 0.12). Conclusions Our predictive model based on routinely preoperative information is highly affordable and might be a useful tool to identify moderate-high risk patients before surgery. However, external validation is needed before implementation.
AB - Objectives To determine preoperative factors associated to myocardial injury after non-cardiac surgery (MINS) and to develop a prediction model of MINS. Design Retrospective analysis. Setting Tertiary hospital in Spain. Participants Patients aged ≥45 years undergoing major non-cardiac surgery and with at least two measures of troponin levels within the first 3 days of the postoperative period. All patients were screened for the MANAGE trial. Primary and secondary outcome measures We used multivariable logistic regression analysis to study risk factors associated with MINS and created a score predicting the preoperative risk for MINS and a nomogram to facilitate bed-side use. We used Least Absolute Shrinkage and Selection Operator method to choose the factors included in the predictive model with MINS as dependent variable. The predictive ability of the model was evaluated. Discrimination was assessed with the area under the receiver operating characteristic curve (AUC) and calibration was visually assessed using calibration plots representing deciles of predicted probability of MINS against the observed rate in each risk group and the calibration-in-the-large (CITL) and the calibration slope. We created a nomogram to facilitate obtaining risk estimates for patients at pre-anaesthesia evaluation. Results Our cohort included 3633 patients recruited from 9 September 2014 to 17 July 2017. The incidence of MINS was 9%. Preoperative risk factors that increased the risk of MINS were age, American Status Anaesthesiology classification and vascular surgery. The predictive model showed good performance in terms of discrimination (AUC=0.720; 95% CI: 0.69 to 0.75) and calibration slope=1.043 (95% CI: 0.90 to 1.18) and CITL=0.00 (95% CI: -0.12 to 0.12). Conclusions Our predictive model based on routinely preoperative information is highly affordable and might be a useful tool to identify moderate-high risk patients before surgery. However, external validation is needed before implementation.
U2 - 10.1136/bmjopen-2020-045052
DO - 10.1136/bmjopen-2020-045052
M3 - Article
C2 - 34348944
SN - 2044-6055
VL - 11
JO - BMJ Open
JF - BMJ Open
IS - 8
ER -