Population distribution over time: modelling local spatial dependence with a CAR process

Ilenia Epifani, Chiara Ghiringhelli, Rosella Nicolini*

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

9 Cites (Scopus)
2 Descàrregues (Pure)

Resum

The effectiveness of local spatial dependence in shaping the population density distribution is investigated. Individual location preferences are modelled by considering the status-related features of a given spatial unit and its neighbours as well as local random spatial dependence. The novelty is framing such a dependence through conditionally autoregressive (CAR) census random effects that are added to a spatially lagged explanatory variable X (SLX) setting. The results not only confirm that controlling for the spatial dimension is relevant but also indicate that local spatial dependence warrants consideration when determining the population distribution of recent decades. In this respect, the framework turns out to be useful for the analysis of microdata in which individual relationships (in a same spatial unit) enforce local spatial dependence.
Idioma originalAnglès nord-americà
Pàgines (de-a)120-144
Nombre de pàgines25
RevistaSpatial Economic Analysis
Volum15
Número2
DOIs
Estat de la publicacióPublicada - 20 de gen. 2020

Fingerprint

Navegar pels temes de recerca de 'Population distribution over time: modelling local spatial dependence with a CAR process'. Junts formen un fingerprint únic.

Com citar-ho