Polarimetric data-based model for tissue recognition

CARLA RODRIGUEZ, ALBERT VAN EECKHOUT, LAIA FERRER, ENRIQUE GARCIA-CAUREL, EMILIO GONZALEZ-ARNAY, JUAN CAMPOS, ANGEL LIZANA

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

23 Cites (Scopus)

Resum

We highlight the potential of a predictive optical model method for tissue recognition, based on the statistical analysis of different polarimetric indicators that retrieve complete polarimetric information (selective absorption, retardance and depolarization) of samples. The study is conducted on the experimental Mueller matrices of four biological tissues (bone, tendon, muscle and myotendinous junction) measured from a collection of 157 ex-vivo chicken samples. Moreover, we perform several non-parametric data distribution analyses to build a logistic regression-based algorithm capable to recognize, in a single and dynamic measurement, whether a sample corresponds (or not) to one of the four different tissue categories.

Idioma originalAnglès
Pàgines (de-a)4852-4872
Nombre de pàgines21
RevistaBiomedical Optics Express
Volum12
Número8
DOIs
Estat de la publicacióPublicada - 1 d’ag. 2021

Fingerprint

Navegar pels temes de recerca de 'Polarimetric data-based model for tissue recognition'. Junts formen un fingerprint únic.

Com citar-ho