Planar Kolmogorov Systems Coming from Spatial Lotka-Volterra Systems

Érika Diz-Pita, Jaume Llibre*, M. Victoria Otero-Espinar

*Autor corresponent d’aquest treball

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

2 Cites (Scopus)

Resum

In this paper, we classify the phase portraits in the Poincaré disc of all the Kolmogorov systems a = y(b0 + b1yz + b2y + b3z),ż = z(c0 - μ(b1yz + b2y + b3z)), which depend on six parameters. We prove that these systems have 52 topologically distinct phase portraits in the Poincaré disc. These systems are provided by a general three-dimensional Lotka-Volterra system with a rational first integral of degree two of the form H = xiyjzk, restricted to each surface H(x,y,z) = h varying h a with the additional assumption that they have a Darboux invariant of the form yℓzmest.

Idioma originalEnglish
Número d’articleA35
RevistaInternational Journal of Bifurcation and Chaos
Volum31
Número13
DOIs
Estat de la publicacióPublicada - 1 d’oct. 2021

Fingerprint

Navegar pels temes de recerca de 'Planar Kolmogorov Systems Coming from Spatial Lotka-Volterra Systems'. Junts formen un fingerprint únic.

Com citar-ho