Phase Portraits of the Equation x¨ + axx˙ + bx3 = 0

Jaume Llibre, Clàudia Valls

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

Resum

The second-order differential equation x¨ + axx˙ + bx3 = 0 with a, b ∈ R has been studied by several authors mainly due to its applications. Here, for the first time, we classify all its phase portraits in function of its parameters a and b. This classification is done in the Poincaré disc in order to control the orbits which scape or come from infinity. We prove that there are exactly six topologically different phase portraits in the Poincar'e disc of the first order differential system associated by the second-order differential equation. Additionally we show that this system is always integrable providing explicitly its first integrals.
Idioma originalAnglès
Pàgines (de-a)825-837
Nombre de pàgines13
RevistaRegular and Chaotic Dynamics
Volum29
Número6
DOIs
Estat de la publicacióPublicada - 2024

Fingerprint

Navegar pels temes de recerca de 'Phase Portraits of the Equation x¨ + axx˙ + bx3 = 0'. Junts formen un fingerprint únic.

Com citar-ho