Resum
In this paper we classify the phase portraits in the Poincaré disc of a class of cubic polynomial differential systems having an invariant ellipse and an invariant straight line. We prove that such a class of cubic polynomial differential systems have exactly 43 topologically different phase portraits in the Poincaré disc. Also we obtain that the invariant ellipse in two of these phase portraits is a limit cycle.
Idioma original | Anglès |
---|---|
Nombre de pàgines | 37 |
Revista | Differential Equations and Dynamical Systems |
DOIs | |
Estat de la publicació | En premsa - 2022 |