Resum
The aim of this paper is to provide sufficient conditions for the existence of periodic solutions emerging from an upright position of small oscillations of a sleeping symmetrical gyrostat with equations of motion [Equation not available: see fulltext.] being α and β parameters satisfying Δ=α 2-4β>0 and β-α2/2 ± α√Δ/2<0, ε a small parameter and, F 1 and F 2 smooth periodic maps in the variable t in resonance p:q with some of the periodic solutions of the system for ε=0, where p and q are positive integers relatively prime. The main tool used is the averaging theory. © 2013 Springer Science+Business Media Dordrecht.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 417-425 |
Revista | Nonlinear Dynamics |
Volum | 73 |
Número | 1-2 |
DOIs | |
Estat de la publicació | Publicada - 1 de jul. 2013 |