Resum
© 2017 Elsevier Ltd In the present paper we study periodic solutions and their stability of the m-order differential equations of the form x(m)+fn(x)=μh(t),where the integers m, n ≥ 2, fn(x)=δxn or δ|x|n with δ=±1, h(t) is a continuous T-periodic function of non-zero average, and μ is a positive small parameter. By using the averaging theory, we will give the existence of T-periodic solutions. Moreover, the instability and the linear stability of these periodic solutions will be obtained.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 285-288 |
Revista | Chaos, Solitons and Fractals |
Volum | 106 |
DOIs | |
Estat de la publicació | Publicada - 1 de gen. 2018 |