Periodic orbits of perturbed non–axially symmetric potentials in 1:1:1 and 1:1:2 resonances

Montserrat Corbera, Jaume Llibre, Claudia Valls

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

2 Cites (Scopus)

Resum

We analytically study the Hamiltonian system in R6 with Hamiltonian H =21 (p2x + p2y + p2z) +1212x2 + ω22y2 + ω32z2) + ε(az3 + z(bx2 + cy2)), being a, b, c ∈ R with c 6= 0, ε a small parameter, and ω1, ω2 and ω3 the unperturbed frequencies of the oscillations along the x, y and z axis, respectively. For |ε| > 0 small, using averaging theory of first and second order we find periodic orbits in every positive energy level of H whose frequencies are ω1 = ω2 = ω3/2 and ω1 = ω2 = ω3, respectively (the number of such periodic orbits depends on the values of the parameters a, b, c). We also provide the shape of the periodic orbits and their linear stability.

Idioma originalAnglès
Pàgines (de-a)2339-2369
Nombre de pàgines31
RevistaDiscrete and Continuous Dynamical Systems - Series B
Volum23
Número6
DOIs
Estat de la publicacióPublicada - d’ag. 2018

Fingerprint

Navegar pels temes de recerca de 'Periodic orbits of perturbed non–axially symmetric potentials in 1:1:1 and 1:1:2 resonances'. Junts formen un fingerprint únic.

Com citar-ho