Resum
A Hopf equilibrium of a differential system in R2 is an equilibrium point whose linear part has eigenvalues ±ωi with ω≠0, where i=−1. We provide necessary and sufficient conditions for the existence of a limit cycle bifurcating from a Hopf equilibrium of 2–dimensional polynomial Kolmogorov systems of arbitrary degree. We provide an estimation of the bifurcating small limit cycle and also characterize the stability of this limit cycle.
Idioma original | Anglès |
---|---|
Número d’article | 110489 |
Revista | Chaos, Solitons and Fractals |
Volum | 142 |
DOIs | |
Estat de la publicació | Publicada - de gen. 2021 |