Periodic orbits bifurcating from a Hopf equilibrium of 2-dimensional polynomial Kolmogorov systems of arbitrary degree

Djamila Djedid, Jaume Llibre*, Amar Makhlouf

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

2 Cites (Scopus)

Resum

A Hopf equilibrium of a differential system in R2 is an equilibrium point whose linear part has eigenvalues ±ωi with ω≠0, where i=−1. We provide necessary and sufficient conditions for the existence of a limit cycle bifurcating from a Hopf equilibrium of 2–dimensional polynomial Kolmogorov systems of arbitrary degree. We provide an estimation of the bifurcating small limit cycle and also characterize the stability of this limit cycle.

Idioma originalAnglès
Número d’article110489
RevistaChaos, Solitons and Fractals
Volum142
DOIs
Estat de la publicacióPublicada - de gen. 2021

Fingerprint

Navegar pels temes de recerca de 'Periodic orbits bifurcating from a Hopf equilibrium of 2-dimensional polynomial Kolmogorov systems of arbitrary degree'. Junts formen un fingerprint únic.

Com citar-ho