Performance impact of parameter tuning on the CCSDS-123 lossless multi- and hyperspectral image compression standard

Stanislau Augé, José Enrique Sánchez, Aaron Kiely, Ian Blanes Garcia, Joan Serra Sagristà

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

26 Cites (Scopus)

Resum

Multispectral and hyperspectral image data payloads have large size and may be challenging to download from remote sensors. To alleviate this problem, such images can be effectively compressed using specially designed algorithms. The new CCSDS-123 standard has been developed to address onboard lossless coding of multispectral and hyperspectral images. The Standard is based on the Fast Lossless (FL) algorithm, which is composed of a causal context-based prediction stage and an entropy-coding stage that utilizes Golomb power-of-two codes. Several parts of each of these two stages have adjustable parameters. CCSDS-123 provides satisfactory performance for a wide set of imagery acquired by various sensors, but end-users of a CCSDS-123 implementation may require assistance to select a suitable combination of parameters for a specific application scenario. To assist end-users, this paper investigates the performance of CCSDS-123 under different parameter combinations and addresses the selection of an adequate combination given a specific sensor. Experimental results suggest that prediction parameters have a greater impact on the compression performance than entropy-coding parameters.
Idioma originalAnglès
RevistaJournal of Applied Remote Sensing
DOIs
Estat de la publicacióEn premsa - 2013

Fingerprint

Navegar pels temes de recerca de 'Performance impact of parameter tuning on the CCSDS-123 lossless multi- and hyperspectral image compression standard'. Junts formen un fingerprint únic.

Com citar-ho