PE effort and neural-based automatic MT metrics: do they correlate?

Sergi Alvarez-Vidal, Antoni Oliver

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

Resum

Neural machine translation (NMT) has shown overwhelmingly good results in recent times. This improvement in quality has boosted the presence of NMT in nearly all fields of translation. Most current translation industry workflows include post-editing (PE) of MT as part of their process. For many domains and language combinations, translators post-edit raw machine translation (MT) to produce the final document. However, this process can only work properly if the quality of the raw MT output can be assured. MT is usually evaluated using automatic scores, as they are much faster and cheaper. However, traditional automatic scores have not been good quality indicators and do not correlate with PE effort. We analyze the correlation of each of the three dimensions of PE effort (temporal, technical and cognitive) with COMET, a neural framework which has obtained outstanding results in recent MT evaluation campaigns.
Idioma originalAnglès
Títol de la publicacióProceedings of the 24th Annual Conference of the European Association for Machine Translation, EAMT 2023
EditorsMary Nurminen, Mary Nurminen, Judith Brenner, Maarit Koponen, Sirkku Latomaa, Mikhail Mikhailov, Frederike Schierl, Tharindu Ranasinghe, Eva Vanmassenhove, Sergi Alvarez Vidal, Nora Aranberri, Mara Nunziatini, Carla Parra Escartin, Mikel Forcada, Maja Popovic, Carolina Scarton, Helena Moniz
EditorEuropean Association for Machine Translation
Pàgines315-323
Nombre de pàgines9
ISBN (electrònic)9789520329471
Estat de la publicacióPublicada - 2023

Sèrie de publicacions

NomProceedings of the 24th Annual Conference of the European Association for Machine Translation, EAMT 2023

Fingerprint

Navegar pels temes de recerca de 'PE effort and neural-based automatic MT metrics: do they correlate?'. Junts formen un fingerprint únic.

Com citar-ho