Outlier exploration and diagnostic classification of a multi-centre H-1-MRS brain tumour database

Alfredo Vellido, Enrique Romero, Felix F. González-Navarro, Lluís A. Belanche-Muñoz, Margarida Juliá-Sapé, Carles Arús

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

30 Cites (Scopus)

Resum

Non-invasive techniques such as magnetic resonance spectroscopy (MRS) are often required for assisting the diagnosis of tumours. Radiologists are not always accustomed to make sense of the biochemical information provided by MRS and they may benefit from computer-based support in their decision making. The high dimensionality of the MR spectra obscures atypical aspects of the data that may jeopardize their classification. In this study, we describe a method to overcome this problem that combines nonlinear dimensionality reduction, outlier detection, and expert opinion. MR spectra subsequently undergo a feature selection process followed by classification. The impact of outlier removal on classification performance is assessed. © 2009 Elsevier B.V.
Idioma originalAnglès
Número d’article13-15
Pàgines (de-a)3085-3097
RevistaNeurocomputing
Volum72
Número13-15
DOIs
Estat de la publicacióPublicada - 2009

Fingerprint

Navegar pels temes de recerca de 'Outlier exploration and diagnostic classification of a multi-centre H-1-MRS brain tumour database'. Junts formen un fingerprint únic.

Com citar-ho