Projectes per any
Resum
© 2017, Mathematica Josephina, Inc. In this paper we analyze the oscillation of functions having derivatives in the Hölder or Zygmund class in terms of generalized differences and prove that its growth is governed by a version of the classical Kolmogorov’s Law of the Iterated Logarithm. A better behavior is obtained for functions in the Lipschitz class via an interesting connection with Calderón–Zygmund operators.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 1665-1686 |
Revista | Journal of Geometric Analysis |
Volum | 28 |
Número | 2 |
DOIs | |
Estat de la publicació | Publicada - 1 d’abr. 2018 |
Fingerprint
Navegar pels temes de recerca de 'Oscillation of Generalized Differences of Hölder and Zygmund Functions'. Junts formen un fingerprint únic.Projectes
- 1 Acabat
-
Aspectos probabilísticos y geométricos de la teoría de funciones
Nicolau Nos, A. (PI), Gonzalez Llorente, J. (Investigador/a Principal 2), Arroyo Garcia, A. R. (Col.laborador/a), Donaire Benito, J. J. (Investigador/a), González Fuentes, M. J. (Investigador/a), Levi, M. (Investigador/a), Soler Gibert, O. (Col.laborador/a), Limani, A. (Col.laborador/a) & Macia Medina, V. J. (Col.laborador/a)
Ministerio de Economía y Competitividad (MINECO)
1/01/18 → 30/09/22
Projecte: Projectes i Ajuts a la Recerca