Resum
We study the size of the set of points where the α-divided difference of a function in the Hölder class Λα is bounded below by a fixed positive constant. Our results are obtained from their discrete analogues which can be stated in the language of dyadic martingales. Our main technical result in this setting is a sharp estimate of the Hausdorff measure of the set of points where a dyadic martingale with bounded increments has maximal growth.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 53–74 |
Nombre de pàgines | 22 |
Revista | Potential Analysis |
Volum | 55 |
Número | 1 |
DOIs | |
Estat de la publicació | Publicada - 2021 |