Orthogonal invariance and identifiability

A. Daniilidis, D. Drusvyatskiy, A. S. Lewis

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

25 Cites (Scopus)

Resum

Matrix variables are ubiquitous in modern optimization, in part because variational properties of useful matrix functions often expedite standard optimization algorithms. Convexity is one important such property: permutation-invariant convex functions of the eigenvalues of a symmetric matrix are convex, leading to the wide applicability of semidefinite programming algorithms. We prove the analogous result for the property of "identifiability," a notion central to many activeset- type optimization algorithms. © 2014 Society for Industrial and Applied Mathematics.
Idioma originalAnglès
Pàgines (de-a)580-598
RevistaSIAM Journal on Matrix Analysis and Applications
Volum35
Número2
DOIs
Estat de la publicacióPublicada - 1 de gen. 2014

Fingerprint

Navegar pels temes de recerca de 'Orthogonal invariance and identifiability'. Junts formen un fingerprint únic.

Com citar-ho