Resum
Matrix variables are ubiquitous in modern optimization, in part because variational properties of useful matrix functions often expedite standard optimization algorithms. Convexity is one important such property: permutation-invariant convex functions of the eigenvalues of a symmetric matrix are convex, leading to the wide applicability of semidefinite programming algorithms. We prove the analogous result for the property of "identifiability," a notion central to many activeset- type optimization algorithms. © 2014 Society for Industrial and Applied Mathematics.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 580-598 |
Revista | SIAM Journal on Matrix Analysis and Applications |
Volum | 35 |
Número | 2 |
DOIs | |
Estat de la publicació | Publicada - 1 de gen. 2014 |