TY - JOUR
T1 - Origin of stereoinduction by chiral aminophosphane phosphinite ligands in enantioselective catalysis: Asymmetric hydroformylation
AU - Carbó, Jorge J.
AU - Lledós, Agustí
AU - Vogt, Dieter
AU - Bo, Carles
PY - 2006/2/1
Y1 - 2006/2/1
N2 - The origin of stereoinduction by chiral aminophosphane phosphinite (AMPP) ligands in asymmetric hydroformylation was investigated with a theoretical approach. The roles of the stereogenic center at the aminophosphane phosphorus atom (NP*) and of the chirality of the backbone were analyzed by considering three experimentally tested cases: 1) P-stereogenic yielding high ee, 2) P-nonstereogenic yielding low ee, and 3) P-stereogenic yielding low ee. We succeeded in reproducing the experimentally observed trends for the three studied AMPP ligands. Our results indicated that alkene insertion into the rhodium-hydride bond is the selectivity-determining step, and not alkene coordination. Additional calculations on model systems revealed that the different nonbonding weak-type interactions of styrene with the substituents of the NP* stereogenic center in an axial position is responsible for stereodifferentiation. The chirality of the AMPP backbone plays a secondary role. The rationalization of the stereochemical outcome is not straightforward, because two competitive equatorial/axial reaction paths, showing opposite asymmetric induction, must be considered. Construction of stereochemical models and evaluation of stereoinduction for novel ligand systems suggested that two prerequisites are required to improve the performance of AMPP-type ligands in asymmetric hydroformylation: 1) combination of stereorecognition and stereohindrance by substituents at the NP* atom, and 2) more rigid backbones. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
AB - The origin of stereoinduction by chiral aminophosphane phosphinite (AMPP) ligands in asymmetric hydroformylation was investigated with a theoretical approach. The roles of the stereogenic center at the aminophosphane phosphorus atom (NP*) and of the chirality of the backbone were analyzed by considering three experimentally tested cases: 1) P-stereogenic yielding high ee, 2) P-nonstereogenic yielding low ee, and 3) P-stereogenic yielding low ee. We succeeded in reproducing the experimentally observed trends for the three studied AMPP ligands. Our results indicated that alkene insertion into the rhodium-hydride bond is the selectivity-determining step, and not alkene coordination. Additional calculations on model systems revealed that the different nonbonding weak-type interactions of styrene with the substituents of the NP* stereogenic center in an axial position is responsible for stereodifferentiation. The chirality of the AMPP backbone plays a secondary role. The rationalization of the stereochemical outcome is not straightforward, because two competitive equatorial/axial reaction paths, showing opposite asymmetric induction, must be considered. Construction of stereochemical models and evaluation of stereoinduction for novel ligand systems suggested that two prerequisites are required to improve the performance of AMPP-type ligands in asymmetric hydroformylation: 1) combination of stereorecognition and stereohindrance by substituents at the NP* atom, and 2) more rigid backbones. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
KW - Asymmetric catalysis
KW - Density functional calculations
KW - Hybrid QM/MM calculations
KW - Hydroformylation
KW - P ligands
U2 - 10.1002/chem.200500606
DO - 10.1002/chem.200500606
M3 - Article
SN - 0947-6539
VL - 12
SP - 1457
EP - 1467
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 5
ER -