Optimal gaussian density estimates for a class of stochastic equations with additive noise

David Nualart, Lluís Quer-Sardanyons

Producció científica: Contribució a una revistaArticleRecercaAvaluat per experts

15 Cites (Scopus)

Resum

In this note, we establish optimal lower and upper Gaussian bounds for the density of the solution to a class of stochastic integral equations driven by an additive spatially homogeneous Gaussian random field. The proof is based on the techniques of the Malliavin calculus and a density formula obtained by Nourdin and Viens. Then, the main result is applied to the mild solution of a general class of SPDEs driven by a Gaussian noise which is white in time and has a spatially homogeneous correlation. In particular, this covers the case of the stochastic heat and wave equations in d with d < 1 and d ∈ {1, 2, 3}, respectively. The upper and lower Gaussian bounds have the same form and are given in terms of the variance of the stochastic integral term in the mild form of the equation. © 2011 World Scientific Publishing Company.
Idioma originalEnglish
Pàgines (de-a)25-34
RevistaInfinite Dimensional Analysis, Quantum Probability and Related Topics
Volum14
DOIs
Estat de la publicacióPublicada - 1 de març 2011

Fingerprint

Navegar pels temes de recerca de 'Optimal gaussian density estimates for a class of stochastic equations with additive noise'. Junts formen un fingerprint únic.

Com citar-ho