On the upper bound of the number of limit cycles obtained by the second order averaging method

J. Llibre, Jiang Yu

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

16 Cites (Scopus)

Resum

For ε small we consider the number of limit cycles of the system ẋ = -y(1 + x) + εF(x, y), ẏ = x(1 + x) + εG(x, y), where F and G are polynomials of degree n starting with terms of degree 1. We prove that at most 2n - 1 limit cycles can bifurcate from the periodic orbits of the unperturbed system (ε = 0) using the averaging theory of second order under the condition that the second order averaging function is not zero. Copyright ©2007 Watam Press.
Idioma originalAnglès
Pàgines (de-a)841-873
RevistaDynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms
Volum14
Número6
Estat de la publicacióPublicada - 1 de des. 2007

Fingerprint

Navegar pels temes de recerca de 'On the upper bound of the number of limit cycles obtained by the second order averaging method'. Junts formen un fingerprint únic.

Com citar-ho