Resum
For ε small we consider the number of limit cycles of the system ẋ = -y(1 + x) + εF(x, y), ẏ = x(1 + x) + εG(x, y), where F and G are polynomials of degree n starting with terms of degree 1. We prove that at most 2n - 1 limit cycles can bifurcate from the periodic orbits of the unperturbed system (ε = 0) using the averaging theory of second order under the condition that the second order averaging function is not zero. Copyright ©2007 Watam Press.
| Idioma original | Anglès |
|---|---|
| Pàgines (de-a) | 841-873 |
| Revista | Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms |
| Volum | 14 |
| Número | 6 |
| Estat de la publicació | Publicada - 1 de des. 2007 |