On the uniqueness of algebraic limit cycles for quadratic polynomial differential systems with two pairs of equilibrium points at infinity

Jaume Llibre, Claudia Valls

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

3 Cites (Scopus)

Resum

© 2017, Springer Science+Business Media Dordrecht. Algebraic limit cycles in quadratic polynomial differential systems started to be studied in 1958, and few years later the following conjecture appeared: quadratic polynomial differential systems have at most one algebraic limit cycle. We prove that for a quadratic polynomial differential system having two pairs of diametrally opposite equilibrium points at infinity, has at most one algebraic limit cycle. Our result provides a partial positive answer to this conjecture.
Idioma originalAnglès
Pàgines (de-a)37-52
RevistaGeometriae Dedicata
Volum191
Número1
DOIs
Estat de la publicacióPublicada - 1 de des. 2017

Fingerprint

Navegar pels temes de recerca de 'On the uniqueness of algebraic limit cycles for quadratic polynomial differential systems with two pairs of equilibrium points at infinity'. Junts formen un fingerprint únic.

Com citar-ho