On the number of nonequivalent propelinear extended perfect codes

J. Borges, I. Yu Mogilnykh Mogilnykh, J. Rifà, F. Solov'eva

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

9 Cites (Scopus)

Resum

The paper proves that there exists an exponential number of nonequivalent pro- pelinear extended perfect binary codes of length growing to infinity. Specifically, it is proved that all transitive extended perfect binary codes found by Potapov (2007) are propelinear. All such codes have small rank, which is one more than the rank of the extended Hamming code of the same length. We investigate the properties of these codes and show that any of them has a normalized propelinear representation.
Idioma originalAnglès
RevistaElectronic Journal of Combinatorics
Volum20
Número2
Estat de la publicacióPublicada - 24 de maig 2013

Fingerprint

Navegar pels temes de recerca de 'On the number of nonequivalent propelinear extended perfect codes'. Junts formen un fingerprint únic.

Com citar-ho