On the number of n-dimensional invariant spheres in polynomail vector fields of C^n 1

Yudy Marcela Bolaños Rivera, Jaume Llibre

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

Resum

We study in C n+1 the polynomial vector fields X = n +1 ∑ i=1 Pi(x1, . . . , xn+1) ∂/ ∂xi with n ≥ 1 . Let mi be the degree of the polynomial Pi . We call (m1, . . . , mn+1) the degree of X . For these polynomial vector fields X and in function of their degree we provide upper bounds, first for the maximal number of invariant n-dimensional spheres, and second for the maximal number of n- dimensional concentric invariant spheres.
Idioma originalAnglès
Pàgines (de-a)0173-182
Nombre de pàgines10
RevistaJournal of Applied Analysis and Computation
Volum1
Número2
Estat de la publicacióPublicada - 2011

Fingerprint

Navegar pels temes de recerca de 'On the number of n-dimensional invariant spheres in polynomail vector fields of C^n 1'. Junts formen un fingerprint únic.

Com citar-ho