On the number of critical periods for planar polynomial systems

Anna Cima, Armengol Gasull, Paulo R. da Silva

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

29 Cites (Scopus)

Resum

In this paper we get some lower bounds for the number of critical periods of families of centers which are perturbations of the linear one. We give a method which lets us prove that there are planar polynomial centers of degree ℓ with at least 2 [(ℓ - 2) / 2] critical periods as well as study concrete families of potential, reversible and Liénard centers. This last case is studied in more detail and we prove that the number of critical periods obtained with our approach does not increases with the order of the perturbation. © 2007 Elsevier Ltd. All rights reserved.
Idioma originalAnglès
Pàgines (de-a)1889-1903
RevistaNonlinear Analysis, Theory, Methods and Applications
Volum69
DOIs
Estat de la publicacióPublicada - 1 d’oct. 2008

Fingerprint

Navegar pels temes de recerca de 'On the number of critical periods for planar polynomial systems'. Junts formen un fingerprint únic.

Com citar-ho