On the existence of equilibrium points, boundedness, oscillating behavior and positivity of a SVEIRS epidemic model under constant and impulsive vaccination

M. De La Sen, Ravi P. Agarwal, A. Ibeas, S. Alonso-Quesada

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

62 Cites (Scopus)

Resum

This paper discusses the disease-free and endemic equilibrium points of a SVEIRS propagation disease model which potentially involves a regular constant vaccination. The positivity of such a model is also discussed as well as the boundedness of the total and partial populations. The model takes also into consideration the natural population growing and the mortality associated to the disease as well as the lost of immunity of newborns. It is assumed that there are two finite delays affecting the susceptible, recovered, exposed, and infected population dynamics. Some extensions are given for the case when impulsive nonconstant vaccination is incorporated at, in general, an aperiodic sequence of time instants. Such an impulsive vaccination consists of a culling or a partial removal action on the susceptible population which is transferred to the vaccinated one. The oscillatory behavior under impulsive vaccination, performed in general, at nonperiodic time intervals, is also discussed. Copyright © 2011 M. De la Sen et al.
Idioma originalAnglès
Número d’article748608
RevistaAdvances in Difference Equations
Volum2011
DOIs
Estat de la publicacióPublicada - 22 de juny 2011

Fingerprint

Navegar pels temes de recerca de 'On the existence of equilibrium points, boundedness, oscillating behavior and positivity of a SVEIRS epidemic model under constant and impulsive vaccination'. Junts formen un fingerprint únic.

Com citar-ho