On the configurations of the singular points and their topological indices for the spatial quadratic polynomial differential systems

Jaume Llibre*, Claudia Valls

*Autor corresponent d’aquest treball

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

5 Cites (Scopus)

Resum

Using the Euler-Jacobi formula there is a relation between the singular points of a polynomial vector field and their topological indices. Using this formula we obtain the configuration of the singular points together with their topological indices for the polynomial differential systems x˙=P(x,y,z), y˙=Q(x,y,z), z˙=R(x,y,z) with degrees of P, Q and R equal to two when these systems have the maximum number of isolated singular points, i.e., 8 singular points. In other words we extend the well-known Berlinskii's Theorem for quadratic polynomial differential systems in the plane to the space.

Idioma originalAnglès
Pàgines (de-a)10571-10586
Nombre de pàgines16
RevistaJournal of differential equations
Volum269
Número12
DOIs
Estat de la publicacióPublicada - 5 de des. 2020

Fingerprint

Navegar pels temes de recerca de 'On the configurations of the singular points and their topological indices for the spatial quadratic polynomial differential systems'. Junts formen un fingerprint únic.

Com citar-ho