On the complex geometry of a class of non-Kählerian manifolds

J. J. Loeb, M. Nicolau

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

17 Cites (Scopus)

Resum

In a recent paper a class of complex, compact and non-Kählerian manifolds was constructed by S. López de Medrano and A. Verjowsky. This class contains as particular cases Calabi-Eckmann manifolds, almost all Hopf manifolds and many of the examples given previously by J.-J. Loeb and M. Nicolau. In this paper we show that these manifolds are endowed with a natural non-singular vector field which is transversely Kählerian, and that analytic subsets of appropriate dimensions are tangent to this vector field. This permits to give a precise description of these sets in the generic case. In the proof, an important role is played by some complex abelian groups which are biholomorphic to big domains in these manifolds.
Idioma originalAnglès
Pàgines (de-a)371-379
RevistaIsrael Journal of Mathematics
Volum110
DOIs
Estat de la publicacióPublicada - 1 de gen. 1999

Fingerprint

Navegar pels temes de recerca de 'On the complex geometry of a class of non-Kählerian manifolds'. Junts formen un fingerprint únic.

Com citar-ho