On the Chebyshev property for a new family of functions

Armengol Gasull, J. Tomás Lázaro, Joan Torregrosa

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

17 Cites (Scopus)

Resum

We analyze whether a given set of analytic functions is an Extended Chebyshev system. This family of functions appears studying the number of limit cycles bifurcating from some nonlinear vector field in the plane. Our approach is mainly based on the so called Derivation-Division algorithm. We prove that under some natural hypotheses our family is an Extended Chebyshev system and when some of them are not fulfilled then the set of functions is not necessarily an Extended Chebyshev system. One of these examples constitutes an Extended Chebyshev system with high accuracy. © 2011 Elsevier Inc.
Idioma originalAnglès
Pàgines (de-a)631-644
RevistaJournal of Mathematical Analysis and Applications
Volum387
Número2
DOIs
Estat de la publicacióPublicada - 15 de març 2012

Fingerprint

Navegar pels temes de recerca de 'On the Chebyshev property for a new family of functions'. Junts formen un fingerprint únic.

Com citar-ho