Projectes per any
Resum
We study the structure of some groups of diffeomorphisms preserving a foliation. We give an example of a C ∞ foliation whose diffeomorphism group has not a natural structure of Lie group. On the positive side, we prove that the automorphism group of a transversely holomorphic foliation or a Riemannian foliation is a strong ILH Lie group in the sense of Omori. We also investigate the relationship of the previous considerations with deformation problems in foliation theory. We show that the existence of a local moduli space for a given foliation imposes strong conditions on its automorphism group. They are not fulfilled in many cases, in particular they are not fulfilled by the foliation mentioned above.
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 1603-1630 |
Nombre de pàgines | 28 |
Revista | Mathematische Zeitschrift (Print) |
Volum | 301 |
Número | 2 |
Data online anticipada | 22 de gen. 2022 |
DOIs | |
Estat de la publicació | Publicada - de juny 2022 |
Fingerprint
Navegar pels temes de recerca de 'On the automorphism group of foliations with geometric transverse structures'. Junts formen un fingerprint únic.Projectes
- 1 Acabat
-
Invariantes locales y globales en geometria
Solanes Farres, G. (PI), Balacheff , F. N. (Investigador/a Principal 2), Rubio Nuñez, R. (Col.laborador/a), Gallego Gomez, E. (Investigador/a), Heusener, M. (Investigador/a), Marin Perez, D. (Investigador/a), Meersseman, L. (Investigador/a), Nicolau Reig, M. (Investigador/a), Porti Pique, J. (Investigador/a), Reventos Tarrida, A. (Investigador/a) & Mijares Verdú, S. (Col.laborador/a)
Ministerio de Ciencia e Innovación (MICINN)
1/01/19 → 30/09/22
Projecte: Projectes i Ajuts a la Recerca