On Itô's formula for elliptic diffusion processes

Xavier Bardina, Carles Rovira

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

9 Cites (Scopus)

Resum

Bardina and Jolis [Stochastic process. Appl. 69 (1997) 83-109] prove an extension of Itô's formula for F(Xt, t), where F(x, t) has a locally square-integrable derivative in x that satisfies a mild continuity condition in t and X is a one-dimensional diffusion process such that the law of Xt has a density satisfying certain properties. This formula was expressed using quadratic covariation. Following the ideas of Eisenbaum [Potential Anal. 13 (2000) 303-328] concerning Brownian motion, we show that one can re-express this formula using integration over space and time with respect to local times in place of quadratic covariation. We also show that when the function F has a locally integrable derivative in t, we can avoid the mild continuity condition in t for the derivative of F in x. © 2007 ISI/BS.
Idioma originalAnglès
Pàgines (de-a)820-830
RevistaBernoulli
Volum13
DOIs
Estat de la publicacióPublicada - 1 de des. 2007

Fingerprint

Navegar pels temes de recerca de 'On Itô's formula for elliptic diffusion processes'. Junts formen un fingerprint únic.

Com citar-ho