On a family of binary completely transitive codes with growing covering radius

Josep Rifà, Victor A. Zinoviev

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

3 Cites (Scopus)

Resum

A new family of binary linear completely transitive (and, therefore, completely regular) codes is constructed. The covering radius of these codes is growing with the length of the code. In particular, for any integer ρ≥2, there exist two codes with d=3, covering radius ρ and length (4ρ2) and (4ρ+22), respectively. These new completely transitive codes induce, as coset graphs, a family of distance-transitive graphs of growing diameter. © 2013 Elsevier B.V. All rights reserved.
Idioma originalAnglès
Pàgines (de-a)48-52
RevistaDiscrete Mathematics
Volum318
Número1
DOIs
Estat de la publicacióPublicada - 6 de març 2014

Fingerprint

Navegar pels temes de recerca de 'On a family of binary completely transitive codes with growing covering radius'. Junts formen un fingerprint únic.

Com citar-ho