Numerical study of the Lorentzian Engle-Pereira-Rovelli-Livine spin foam amplitude

Pietro Donà, Marco Fanizza, Giorgio Sarno, Simone Speziale

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

47 Cites (Scopus)

Resum

The Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) spin foam amplitude for loop quantum gravity is a multidimensional noncompact integral of highly oscillating functions. Using a method based on the decomposition of Clebsch-Gordan coefficients for the unitary infinite-dimensional representations of SL(2,C) in terms of those of SU(2), we are able to provide for the first time numerical evaluations of the vertex amplitude. The values obtained support the asymptotic formula obtained by Barrett and collaborators with a saddle point approximation, showing, in particular, a power-law decay and oscillations related to the Regge action. The comparison offers a test of the efficiency of the method. Truncating the decomposition to the first few terms provides a qualitative matching of the power-law decay and oscillations. For vector and Euclidean Regge boundary data, a qualitative matching is obtained with just the first term, which corresponds to the simplified EPRL model. We comment on future developments for the numerics and extension to higher vertices. We complete our work with some analytic results: We provide an algorithm and explicit configurations for the different geometries that can arise as boundary data, and explain the geometric consequences of the decomposition used.

Idioma originalAnglès
Número d’article106003
Nombre de pàgines33
RevistaPhysical Review D
Volum100
Número10
DOIs
Estat de la publicacióPublicada - 7 de nov. 2019

Fingerprint

Navegar pels temes de recerca de 'Numerical study of the Lorentzian Engle-Pereira-Rovelli-Livine spin foam amplitude'. Junts formen un fingerprint únic.

Com citar-ho