Numerical solution of the quantum Lenard-Balescu equation for a non-degenerate one-component plasma

Christian R. Scullard, Andrew P. Belt, Susan C. Fennell, Marija R. Janković, Nathan Ng, Susana Serna, Frank R. Graziani

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

7 Cites (Scopus)

Resum

© 2016 Author(s). We present a numerical solution of the quantum Lenard-Balescu equation using a spectral method, namely an expansion in Laguerre polynomials. This method exactly conserves both particles and kinetic energy and facilitates the integration over the dielectric function. To demonstrate the method, we solve the equilibration problem for a spatially homogeneous one-component plasma with various initial conditions. Unlike the more usual Landau/Fokker-Planck system, this method requires no input Coulomb logarithm; the logarithmic terms in the collision integral arise naturally from the equation along with the non-logarithmic order-unity terms. The spectral method can also be used to solve the Landau equation and a quantum version of the Landau equation in which the integration over the wavenumber requires only a lower cutoff. We solve these problems as well and compare them with the full Lenard-Balescu solution in the weak-coupling limit. Finally, we discuss the possible generalization of this method to include spatial inhomogeneity and velocity anisotropy.
Idioma originalAnglès
Número d’article092119
RevistaPhysics of Plasmas
Volum23
Número9
DOIs
Estat de la publicacióPublicada - 1 de set. 2016

Fingerprint

Navegar pels temes de recerca de 'Numerical solution of the quantum Lenard-Balescu equation for a non-degenerate one-component plasma'. Junts formen un fingerprint únic.

Com citar-ho