Resum
Idioma original | Anglès |
---|---|
Pàgines (de-a) | 2211-2223 |
Nombre de pàgines | 13 |
Revista | Leukemia |
Volum | 32 |
Número | 10 |
DOIs | |
Estat de la publicació | Publicada - 1 d’oct. 2018 |
SDG de les Nacions Unides
Aquest resultat contribueix als següents objectius de desenvolupament sostenible.
Accés al document
Altres arxius i enllaços
Fingerprint
Navegar pels temes de recerca de 'Novel phosphorylated TAK1 species with functional impact on NF-κB and β-catenin signaling in human Cutaneous T-cell lymphoma'. Junts formen un fingerprint únic.Com citar-ho
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Leukemia, Vol. 32, Núm. 10, 01.10.2018, pàg. 2211-2223.
Producció científica: Contribució a revista › Article › Recerca › Avaluat per experts
TY - JOUR
T1 - Novel phosphorylated TAK1 species with functional impact on NF-κB and β-catenin signaling in human Cutaneous T-cell lymphoma
AU - Gallardo, Fernando
AU - Bertran, Joan
AU - López-Arribillaga, Erika
AU - González, Jéssica
AU - Menéndez, Silvia
AU - Sánchez, Ignacio
AU - Colomo, Luis
AU - Iglesias, Mar
AU - Garrido, Marta
AU - Santamaría-Babí, Luis Francisco
AU - Torres, Ferran
AU - Pujol, Ramon M.
AU - Bigas, Anna
AU - Espinosa, Lluís
N1 - Cited By :10 Export Date: 17 February 2022 CODEN: LEUKE Correspondence Address: Bigas, A.; Stem Cells and Cancer Research Laboratory, Spain; email: [email protected] Chemicals/CAS: mitogen activated protein kinase kinase kinase, 146702-84-3; myosin light chain phosphatase, 60241-39-6; beta Catenin; CTNNB1 protein, human; MAP kinase kinase kinase 7; MAP Kinase Kinase Kinases; Myosin-Light-Chain Phosphatase; neuropeptide Y4 receptor; NF-kappa B; Receptors, Neuropeptide Y Funding details: Fundació la Marató de TV3, 20131210 Funding details: Ministerio de Economía y Competitividad, MINECO, SAF2016-75613-R Funding details: Instituto de Salud Carlos III, ISCIII, PI13/00448, PI16/ 00437, PT13/0002/002, PT13/0010/0005 Funding text 1: Acknowledgements We want to thank the Bigas’ lab members for constructive discussions and suggestions. Proteomics analyses were perfomed at the CRG/UPF Proteomics Unit of the Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra (UPF), 08003 Barcelona, which is part of the Plataforma de Recursos Biomoleculares y Bioinformáticos del Instituto de Salud Carlos III (PT13/0001). This work was supported by grants from Instituto de Salud Carlos III FEDER (PT13/0002/002, PT13/0010/0005, PI13/00448 and PI16/ 00437), Ministerio de Economía y Competitividad (SAF2016-75613-R), Fundació la Marató de TV3 (20131210); and the “Xarxa de Bancs de tumors sponsored by Pla Director d’Oncologia de Catalunya (XBTC). References: Zinzani, P.L., Bonthapally, V., Huebner, D., Lutes, R., Chi, A., Pileri, S., Panoptic clinical review of the current and future treatment of relapsed/refractory T-cell lymphomas: cutaneous T-cell lymphomas (2016) Crit Rev Oncol/Hematol, 99, pp. 228-240; Vieyra-Garcia, P.A., Wei, T., Naym, D.G., Fredholm, S., Fink-Puches, R., Cerroni, L., STAT3/5-Dependent IL9 Overexpression contributes to neoplastic cell survival in mycosis fungoides (2016) Clin Cancer Res, 22 (13), pp. 3328-3339. , COI: 1:CAS:528:DC%2BC28XhtVyiurbM; van der Fits, L., Qin, Y., Out-Luiting, J.J., Vermeer, K.G., Whittaker, S., van Es, J.H., NOTCH1 signaling as a therapeutic target in Sezary syndrome (2012) J Invest Dermatol, 132 (12), pp. 2810-2817; McKenzie, R.C., Jones, C.L., Tosi, I., Caesar, J.A., Whittaker, S.J., Mitchell, T.J., Constitutive activation of STAT3 in Sezary syndrome is independent of SHP-1 (2012) Leukemia, 26 (2), pp. 323-331. , COI: 1:CAS:528:DC%2BC38XitFGgurg%3D; Kamstrup, M.R., Gjerdrum, L.M., Biskup, E., Lauenborg, B.T., Ralfkiaer, E., Woetmann, A., Notch1 as a potential therapeutic target in cutaneous T-cell lymphoma (2010) Blood, 116 (14), pp. 2504-2512. , COI: 1:CAS:528:DC%2BC3cXhtlyqt7bO; Gallardo, F., Sandoval, J., Diaz-Lagares, A., Garcia, R., D’Altri, T., Gonzalez, J., Notch1 pathway activation results from the epigenetic abrogation of notch-related MicroRNAs in Mycosis Fungoides (2015) J Invest Dermatol, 135 (12), pp. 3144-3152. , COI: 1:CAS:528:DC%2BC2MXhsFGhsbzN; Bellei, B., Cota, C., Amantea, A., Muscardin, L., Picardo, M., Association of p53 Arg72Pro polymorphism and beta-catenin accumulation in mycosis fungoides (2006) Br J Dermatol, 155 (6), pp. 1223-1229. , COI: 1:CAS:528:DC%2BD2sXntVagug%3D%3D; da Silva Almeida, A.C., Abate, F., Khiabanian, H., Martinez-Escala, E., Guitart, J., Tensen, C.P., The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome (2015) Nat Genet, 47 (12), pp. 1465-1470; Ungewickell, A., Bhaduri, A., Rios, E., Reuter, J., Lee, C.S., Mah, A., Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2 (2015) Nat Genet, 47 (9), pp. 1056-1060. , COI: 1:CAS:528:DC%2BC2MXhtlSnurnJ; Choi, J., Goh, G., Walradt, T., Hong, B.S., Bunick, C.G., Chen, K., Genomic landscape of cutaneous T cell lymphoma (2015) Nat Genet, 47 (9), pp. 1011-1019. , COI: 1:CAS:528:DC%2BC2MXht1WltLjM; Braun, F.C., Grabarczyk, P., Mobs, M., Braun, F.K., Eberle, J., Beyer, M., Tumor suppressor TNFAIP3 (A20) is frequently deleted in Sezary syndrome (2011) Leukemia, 25 (9), pp. 1494-1501. , COI: 1:CAS:528:DC%2BC3MXhtFCqsL7L; Davis, R.E., Brown, K.D., Siebenlist, U., Staudt, L.M., Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells (2001) J Exp Med, 194 (12), pp. 1861-1874. , COI: 1:CAS:528:DC%2BD38Xpt1ar; Davis, R.E., Ngo, V.N., Lenz, G., Tolar, P., Young, R.M., Romesser, P.B., Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma (2010) Nature, 463 (7277), pp. 88-92. , COI: 1:CAS:528:DC%2BC3cXhvFCitw%3D%3D; Doerre, S., Corley, R.B., Constitutive nuclear translocation of NF-kappa B in B cells in the absence of I kappa B degradation (1999) J Immunol, 163 (1), pp. 269-277. , COI: 1:CAS:528:DyaK1MXktF2qs7o%3D, PID: 10384125; Guo, X., Koff, J.L., Moffitt, A.B., Cinar, M., Ramachandiran, S., Chen, Z., Switchenko, J.M., Bernal-Mizrachi, L., Molecular impact of selective NFKB1 and NFKB2 signaling on DLBCL phenotype (2017) Oncogene, 36 (29), pp. 4224-4232. , COI: 1:CAS:528:DC%2BC2sXlslGisb8%3D; Pham, L.V., Tamayo, A.T., Yoshimura, L.C., Lo, P., Terry, N., Reid, P.S., A CD40 Signalosome anchored in lipid rafts leads to constitutive activation of NF-kappaB and autonomous cell growth in B cell lymphomas (2002) Immunity, 16 (1), pp. 37-50. , COI: 1:CAS:528:DC%2BD38Xht1SmtL4%3D; Sagaert, X., Van Cutsem, E., De Hertogh, G., Geboes, K., Tousseyn, T., Gastric MALT lymphoma: a model of chronic inflammation-induced tumor development (2010) Nat Rev Gastroenterol Hepatol, 7 (6), pp. 336-346. , COI: 1:CAS:528:DC%2BC3cXntVSgur0%3D; Willis, T.G., Jadayel, D.M., Du, M.Q., Peng, H., Perry, A.R., Abdul-Rauf, M., Bcl10 is involved in t(1;14)(p22; q32) of MALT B cell lymphoma and mutated in multiple tumor types (1999) Cell, 96 (1), pp. 35-45. , COI: 1:CAS:528:DyaK1MXmslagsA%3D%3D; Chang, T.P., Poltoratsky, V., Vancurova, I., Bortezomib inhibits expression of TGF-beta1, IL-10, and CXCR4, resulting in decreased survival and migration of cutaneous T cell lymphoma cells (2015) J Immunol, 194 (6), pp. 2942-2953. , COI: 1:CAS:528:DC%2BC2MXjvFShsL8%3D; Chang, T.P., Vancurova, I., NFkappaB function and regulation in cutaneous T-cell lymphoma (2013) Am J Cancer Res, 3 (5), pp. 433-445. , PID: 24224122; Li, L., Ruan, Q., Hilliard, B., Devirgiliis, J., Karin, M., Chen, Y.H., Transcriptional regulation of the Th17 immune response by IKK(alpha) (2011) J Exp Med, 208 (4), pp. 787-796. , COI: 1:CAS:528:DC%2BC3MXkvFCrs70%3D; Chang, J.H., Xiao, Y., Hu, H., Jin, J., Yu, J., Zhou, X., Ubc13 maintains the suppressive function of regulatory T cells and prevents their conversion into effector-like T cells (2012) Nat Immunol, 13 (5), pp. 481-490. , COI: 1:CAS:528:DC%2BC38XltFOgtb0%3D; Ren, H., Schmalstieg, A., van Oers, N.S., Gaynor, R.B., I-kappa B kinases alpha and beta have distinct roles in regulating murine T cell function (2002) J Immunol, 168 (8), pp. 3721-3731. , COI: 1:CAS:528:DC%2BD38XivV2jur4%3D; Voll, R.E., Jimi, E., Phillips, R.J., Barber, D.F., Rincon, M., Hayday, A.C., NF-kappa B activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development (2000) Immunity, 13 (5), pp. 677-689. , COI: 1:CAS:528:DC%2BD3cXovV2ht7k%3D; Senftleben, U., Li, Z.W., Baud, V., Karin, M., IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis (2001) Immunity, 14 (3), pp. 217-230. , COI: 1:CAS:528:DC%2BD3MXis1ehurw%3D; Schmidt-Supprian, M., Courtois, G., Tian, J., Coyle, A.J., Israel, A., Rajewsky, K., Mature T cells depend on signaling through the IKK complex (2003) Immunity, 19 (3), pp. 377-389. , COI: 1:CAS:528:DC%2BD3sXnsl2jt7Y%3D; Espinosa, L., Cathelin, S., D’Altri, T., Trimarchi, T., Statnikov, A., Guiu, J., The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia (2010) Cancer Cell, 18 (3), pp. 268-281. , COI: 1:CAS:528:DC%2BC3cXhtFGht7bL; Sun, S.C., Maggirwar, S.B., Harhaj, E., Activation of NF-kappa B by phosphatase inhibitors involves the phosphorylation of I kappa B alpha at phosphatase 2A-sensitive sites (1995) J Biol Chem, 270 (31), pp. 18347-18351. , COI: 1:CAS:528:DyaK2MXntlCqtLw%3D; Menon, S.D., Qin, S., Guy, G.R., Tan, Y.H., Differential induction of nuclear NF-kappa B by protein phosphatase inhibitors in primary and transformed human cells. Requirement for both oxidation and phosphorylation in nuclear translocation (1993) J Biol Chem, 268 (35), pp. 26805-26812. , COI: 1:CAS:528:DyaK3sXmsVOlt7o%3D, PID: 8253818; Li, H.Y., Liu, H., Wang, C.H., Zhang, J.Y., Man, J.H., Gao, Y.F., Deactivation of the kinase IKK by CUEDC2 through recruitment of the phosphatase PP1 (2008) Nat Immunol, 9 (5), pp. 533-541. , COI: 1:CAS:528:DC%2BD1cXkvVOqtb4%3D; Brechmann, M., Mock, T., Nickles, D., Kiessling, M., Weit, N., Breuer, R., A PP4 holoenzyme balances physiological and oncogenic nuclear factor-kappa B signaling in T lymphocytes (2012) Immunity, 37 (4), pp. 697-708. , COI: 1:CAS:528:DC%2BC38XhsFeqs7jM; Gu, M., Ouyang, C., Lin, W., Zhang, T., Cao, X., Xia, Z., Phosphatase holoenzyme PP1/GADD34 negatively regulates TLR response by inhibiting TAK1 serine 412 phosphorylation (2014) J Immunol, 192 (6), pp. 2846-2856. , COI: 1:CAS:528:DC%2BC2cXjslGlsL0%3D; Ouyang, C., Nie, L., Gu, M., Wu, A., Han, X., Wang, X., Transforming growth factor (TGF)-beta-activated kinase 1 (TAK1) activation requires phosphorylation of serine 412 by protein kinase A catalytic subunit alpha (PKACalpha) and X-linked protein kinase (PRKX) (2014) J Biol Chem, 289 (35), pp. 24226-24237. , COI: 1:CAS:528:DC%2BC2cXhsVGjt7vL; Margalef, P., Colomer, C., Villanueva, A., Montagut, C., Iglesias, M., Bellosillo, B., BRAF-induced tumorigenesis is IKKalpha-dependent but NF-kappaB-independent (2015) Sci Signal, 8 (373), p. ra38; Kaveri, D., Kastner, P., Dembele, D., Nerlov, C., Chan, S., Kirstetter, P., beta-Catenin activation synergizes with Pten loss and Myc overexpression in Notch-independent T-ALL (2013) Blood, 122 (5), pp. 694-704. , COI: 1:CAS:528:DC%2BC3sXht1OmsbrP; Giambra, V., Jenkins, C.E., Lam, S.H., Hoofd, C., Belmonte, M., Wang, X., Leukemia stem cells in T-ALL require active Hif1alpha and Wnt signaling (2015) Blood, 125 (25), pp. 3917-3927. , COI: 1:CAS:528:DC%2BC2MXhtFCmsb%2FO; Gekas, C., D’Altri, T., Aligué, R., González, J., Espinosa, L., Bigas, A., β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1 (2016) Leukemia, 30 (10), pp. 2002-2010. , COI: 1:CAS:528:DC%2BC28XotFOiurg%3D; Bellei, B., Pacchiarotti, A., Perez, M., Faraggiana, T., Frequent beta-catenin overexpression without exon 3 mutation in cutaneous lymphomas (2004) Mod Pathol, 17 (10), pp. 1275-1281. , COI: 1:CAS:528:DC%2BD2cXovFOqt74%3D; Singh, A., Sweeney, M.F., Yu, M., Burger, A., Greninger, P., Benes, C., TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers (2012) Cell, 148 (4), pp. 639-650. , COI: 1:CAS:528:DC%2BC38XjtV2ktb0%3D; Birukova, A.A., Smurova, K., Birukov, K.G., Usatyuk, P., Liu, F., Kaibuchi, K., Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: role of Rho-dependent mechanisms (2004) J Cell Physiol, 201 (1), pp. 55-70. , COI: 1:CAS:528:DC%2BD2cXnsFGhtbw%3D; Chen, M., Ma, L., Hall, J.E., Liu, X., Ying, Z., Dual regulation of tumor necrosis factor-alpha on myosin light chain phosphorylation in vascular smooth muscle (2015) Am J Physiol Heart Circ Physiol, 308 (5), pp. H398-H406. , COI: 1:CAS:528:DC%2BC2MXlsFCiu7k%3D; Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase) (1996) Science, 273 (5272), pp. 245-248. , COI: 1:CAS:528:DyaK28Xkt1Crs7Y%3D; Khasnis, M., Nakatomi, A., Gumpper, K., Eto, M., Reconstituted human myosin light chain phosphatase reveals distinct roles of two inhibitory phosphorylation sites of the regulatory subunit, MYPT1 (2014) Biochemistry, 53 (16), pp. 2701-2709. , COI: 1:CAS:528:DC%2BC2cXlslSmt7Y%3D; Aburima, A., Wraith, K.S., Raslan, Z., Law, R., Magwenzi, S., Naseem, K.M., cAMP signaling regulates platelet myosin light chain (MLC) phosphorylation and shape change through targeting the RhoA-Rho kinase-MLC phosphatase signaling pathway (2013) Blood, 122 (20), pp. 3533-3545. , COI: 1:CAS:528:DC%2BC3sXhvVehsr%2FJ; Arthur, W.T., Noren, N.K., Burridge, K., Regulation of Rho family GTPases by cell-cell and cell-matrix adhesion (2002) Biol Res, 35 (2), pp. 239-246. , COI: 1:CAS:528:DC%2BD3sXhtVWhurs%3D; Hoberg, J.E., Yeung, F., Mayo, M.W., SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival (2004) Mol Cell, 16 (2), pp. 245-255. , COI: 1:CAS:528:DC%2BD2cXhtVWit73P; Wu, X., Sells, R.E., Hwang, S.T., Upregulation of inflammatory cytokines and oncogenic signal pathways preceding tumor formation in a murine model of T-cell lymphoma in skin (2011) J Invest Dermatol, 131 (8), pp. 1727-1734. , COI: 1:CAS:528:DC%2BC3MXovFaku7s%3D; Kadin, M.E., Cavaille-Coll, M.W., Gertz, R., Massague, J., Cheifetz, S., George, D., Loss of receptors for transforming growth factor beta in human T-cell malignancies (1994) Proc Natl Acad Sci USA, 91 (13), pp. 6002-6006. , COI: 1:STN:280:DyaK2c3os1GltA%3D%3D; Nakahata, S., Yamazaki, S., Nakauchi, H., Morishita, K., Downregulation of ZEB1 and overexpression of Smad7 contribute to resistance to TGF-beta1-mediated growth suppression in adult T-cell leukemia/lymphoma (2010) Oncogene, 29 (29), pp. 4157-4169. , COI: 1:CAS:528:DC%2BC3cXms1yntLw%3D
PY - 2018/10/1
Y1 - 2018/10/1
N2 - © 2018, The Author(s). Cutaneous T-cell lymphomas (CTCLs) represent different subtypes of lymphoproliferative disorders with no curative therapies for the advanced forms of the disease (namely mycosis fungoides and the leukemic variant, Sézary syndrome). Molecular events leading to CTCL progression are heterogeneous, however recent DNA and RNA sequencing studies highlighted the importance of NF-κB and β-catenin pathways. We here show that the kinase TAK1, known as essential in B-cell lymphoma, is constitutively activated in CTCL cells, but tempered by the MYPT1/PP1 phosphatase complex. Blocking PP1 activity, both pharmacologically and genetically, resulted in TAK1 hyperphosphorylation at residues T344, S389, T444, and T511, which have functional impact on canonical NF-κB signaling. Inhibition of TAK1 precluded NF-κB and β-catenin signaling and induced apoptosis of CTCL cell lines and primary Sézary syndrome cells both in vitro and in vivo. Detection of phosphorylated TAK1 at T444 and T344 is associated with the presence of lymphoma in a set of 60 primary human samples correlating with NF-κB and β-catenin activation. These results identified TAK1 as a potential biomarker and therapeutic target for CTCL therapy.
AB - © 2018, The Author(s). Cutaneous T-cell lymphomas (CTCLs) represent different subtypes of lymphoproliferative disorders with no curative therapies for the advanced forms of the disease (namely mycosis fungoides and the leukemic variant, Sézary syndrome). Molecular events leading to CTCL progression are heterogeneous, however recent DNA and RNA sequencing studies highlighted the importance of NF-κB and β-catenin pathways. We here show that the kinase TAK1, known as essential in B-cell lymphoma, is constitutively activated in CTCL cells, but tempered by the MYPT1/PP1 phosphatase complex. Blocking PP1 activity, both pharmacologically and genetically, resulted in TAK1 hyperphosphorylation at residues T344, S389, T444, and T511, which have functional impact on canonical NF-κB signaling. Inhibition of TAK1 precluded NF-κB and β-catenin signaling and induced apoptosis of CTCL cell lines and primary Sézary syndrome cells both in vitro and in vivo. Detection of phosphorylated TAK1 at T444 and T344 is associated with the presence of lymphoma in a set of 60 primary human samples correlating with NF-κB and β-catenin activation. These results identified TAK1 as a potential biomarker and therapeutic target for CTCL therapy.
KW - beta catenin
KW - immunoglobulin enhancer binding protein
KW - phosphoprotein phosphatase 1
KW - transforming growth factor beta activated kinase 1
KW - CTNNB1 protein, human
KW - MAP kinase kinase kinase 7
KW - mitogen activated protein kinase kinase kinase
KW - myosin light chain phosphatase
KW - neuropeptide Y receptor
KW - neuropeptide Y4 receptor
KW - animal experiment
KW - animal model
KW - apoptosis
KW - Article
KW - controlled study
KW - correlational study
KW - cutaneous T cell lymphoma
KW - cutaneous T-cell lymphoma cell line
KW - enzyme activity
KW - enzyme inhibition
KW - human
KW - human cell
KW - in vitro study
KW - in vivo study
KW - lymphoma cell
KW - mouse
KW - mycosis fungoides/Sezary syndrome cell line
KW - nonhuman
KW - priority journal
KW - protein analysis
KW - protein function
KW - protein phosphorylation
KW - signal transduction
KW - animal
KW - metabolism
KW - phosphorylation
KW - physiology
KW - Sezary syndrome
KW - skin tumor
KW - tumor cell line
KW - Animals
KW - Apoptosis
KW - beta Catenin
KW - Cell Line, Tumor
KW - Humans
KW - Lymphoma, T-Cell, Cutaneous
KW - MAP Kinase Kinase Kinases
KW - Mice
KW - Myosin-Light-Chain Phosphatase
KW - NF-kappa B
KW - Phosphorylation
KW - Receptors, Neuropeptide Y
KW - Sezary Syndrome
KW - Signal Transduction
KW - Skin Neoplasms
UR - http://www.nature.com/articles/s41375-018-0066-4
U2 - 10.1038/s41375-018-0066-4
DO - 10.1038/s41375-018-0066-4
M3 - Article
C2 - 29511289
SN - 0887-6924
VL - 32
SP - 2211
EP - 2223
JO - Leukemia
JF - Leukemia
IS - 10
ER -