Non-stable K;-theory for QB-rings

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

Resum

We study the class of QB-rings that satisfy the weak cancellation condition of separativity for finitely generated projective modules. This property turns out to be crucial for proving that all (quasi-)invertible matrices over a QB-ring can be diagonalised using row and column operations. The main two consequences of this fact are: (i) The natural map GL1(R) → K1 (R) is surjective, and (ii) the only obstruction to lift invertible elements from a quotient is of K -theoretical nature. We also show that for a reasonably large class of QB-rings that includes the prime ones, separativity always holds.
Idioma originalAnglès
Pàgines (de-a)265-300
RevistaMathematica Scandinavica
Volum100
Número2
DOIs
Estat de la publicacióPublicada - 1 de gen. 2007

Fingerprint

Navegar pels temes de recerca de 'Non-stable K;-theory for QB-rings'. Junts formen un fingerprint únic.

Com citar-ho