Non-simple purely infinite rings

K. R. Goodearl, F. Perera, G. Aranda Pino

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

24 Cites (Scopus)

Resum

In this paper we introduce the concept of purely infinite rings, which in the simple case agrees with the already existing notion of pure infiniteness. We establish various permanence properties of this notion, with respect to passage to matrix rings, corners, and behaviour under extensions, so being purely infinite is preserved under Morita equivalence. We show that a wealth of examples falls into this class, including important analogues of constructions commonly found in operator algebras. In particular, for any (s-) unital K-algebra having enough nonzero idempotents (for example, for a von Neumann regular algebra) its tensor product over K with many non-simple Leavitt path algebras is purely infinite. © 2010 by The Johns Hopkins University Press.
Idioma originalAnglès
Pàgines (de-a)563-610
RevistaAmerican Journal of Mathematics
Volum132
DOIs
Estat de la publicacióPublicada - 1 de juny 2010

Fingerprint

Navegar pels temes de recerca de 'Non-simple purely infinite rings'. Junts formen un fingerprint únic.

Com citar-ho