Non existence of principal values of signed riesz transforms of non integer dimension

Aleix Ruiz De Villa, Xavier Tolsa

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

10 Cites (Scopus)

Resum

In this paper we prove that, given s ≥ 0, and a Borel non zero measure μ in Rm, if for μ-almost every x ∈ Rm the limit mathematical equation presented exists and 0 < lim sup r→0μ(B(x; r)) /rs < ∞, then s in an integer. In particular, if E ⊂ Rm is a set with positive and bounded s-dimensional Hausdorff measure Hs and for H s-almost every x ∈ E the limit mathematical equation presented exists, then s is an integer. ©, Vol. 59, No. 1 (2010).
Idioma originalAnglès
Pàgines (de-a)115-130
RevistaIndiana University Mathematics Journal
Volum59
DOIs
Estat de la publicacióPublicada - 20 de jul. 2010

Fingerprint

Navegar pels temes de recerca de 'Non existence of principal values of signed riesz transforms of non integer dimension'. Junts formen un fingerprint únic.

Com citar-ho