Non-bifurcation of critical periods from semi-hyperbolic polycycles of quadratic centres

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

Resum

In this paper we consider the unfolding of saddle-node X=1xUa(x,y)(x(xμ−ε)∂x−Va(x)y∂y), parametrized by (ε,a) with ε≈0 and a in an open subset A of Rα, and we study the Dulac time T(s;ε,a) of one of its hyperbolic sectors. We prove (theorem 1.1) that the derivative ∂sT(s;ε,a) tends to −∞ as (s,ε)→(0+,0) uniformly on compact subsets of A. This result is addressed to study the bifurcation of critical periods in the Loud's family of quadratic centres. In this regard we show (theorem 1.2) that no bifurcation occurs from certain semi-hyperbolic polycycles.
Idioma originalAnglès
Pàgines (de-a)104-114
Nombre de pàgines11
RevistaProceedings of the Royal Society of Edinburgh Section A: Mathematics
Volum153
Número1
DOIs
Estat de la publicacióPublicada - 1 de des. 2021

Fingerprint

Navegar pels temes de recerca de 'Non-bifurcation of critical periods from semi-hyperbolic polycycles of quadratic centres'. Junts formen un fingerprint únic.

Com citar-ho