New results on averaging theory and applications

Murilo R. Cândido, Jaume Llibre

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

8 Cites (Scopus)

Resum

© 2016, Springer International Publishing. The usual averaging theory reduces the computation of some periodic solutions of a system of ordinary differential equations, to find the simple zeros of an associated averaged function. When one of these zeros is not simple, i.e., the Jacobian of the averaged function in it is zero, the classical averaging theory does not provide information about the periodic solution associated to a non-simple zero. Here we provide sufficient conditions in order that the averaging theory can be applied also to non-simple zeros for studying their associated periodic solutions. Additionally, we do two applications of this new result for studying the zero–Hopf bifurcation in the Lorenz system and in the Fitzhugh–Nagumo system.
Idioma originalAnglès
Número d’article106
RevistaZeitschrift fur Angewandte Mathematik und Physik
Volum67
Número4
DOIs
Estat de la publicacióPublicada - 1 d’ag. 2016

Fingerprint

Navegar pels temes de recerca de 'New results on averaging theory and applications'. Junts formen un fingerprint únic.

Com citar-ho