New lower bound for the Hilbert number in piecewise quadratic differential systems

Leonardo P.C. da Cruz, Douglas D. Novaes, Joan Torregrosa

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

59 Cites (Scopus)

Resum

© 2018 Elsevier Inc. We study the number of limit cycles bifurcating from a piecewise quadratic system. All the differential systems considered are piecewise in two zones separated by a straight line. We prove the existence of 16 crossing limit cycles in this class of systems. If we denote by Hp(n) the extension of the Hilbert number to degree n piecewise polynomial differential systems, then Hp(2)≥16. As fas as we are concerned, this is the best lower bound for the quadratic class. Moreover, in the studied cases, all limit cycles appear nested bifurcating from a period annulus of a isochronous quadratic center.
Idioma originalAnglès
Pàgines (de-a)4170-4203
RevistaJournal of Differential Equations
Volum266
DOIs
Estat de la publicacióPublicada - 15 de març 2019

Fingerprint

Navegar pels temes de recerca de 'New lower bound for the Hilbert number in piecewise quadratic differential systems'. Junts formen un fingerprint únic.

Com citar-ho