TY - JOUR
T1 - Network coding advantage over MDS codes for multimedia transmission via erasure satellite channels
AU - Saxena, Paresh
AU - Vázquez-Castro, M. A.
PY - 2013/1/1
Y1 - 2013/1/1
N2 - © Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013. In this paper, we focus on the performance analysis of packetlevel Forward Error Correction (FEC) codes based on Systematic Random Linear Network Coding (SRNC) for multimedia transmission via erasure satellite channels. A performance comparison is presented against maximum distance separable (MDS) codes currently used in state-of-theart satellite transmission air interfaces, specifically Reed Solomon (RS) codes. Firstly, a theoretical analysis is presented for which we first develop a matricial erasure channel model. The theoretical analysis shows that both the RS and SRNC have, as expected, similar error correction performance over different packet erasure lengths for commonly used size fields. Secondly, we present an on-the-fly progressive algorithm for SRNC, which takes advantage of the inherent randomness of SRNC encoding. Thirdly, a performance comparison is presented for two different satellite scenarios: 1) DVB-S2/RCS railway scenario and 2) Broadband Global Area Network (BGAN) mobile scenario. We use real channel parameters for the first scenario and channel traces of video streaming sessions for the second scenario. Our simulation results confirm that both the RS codes and SNRC have the same packet recovery capabilities. However, for low coding rates, SRNC is shown to achieve up to 71% delay gain as compared to RS codes.
AB - © Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013. In this paper, we focus on the performance analysis of packetlevel Forward Error Correction (FEC) codes based on Systematic Random Linear Network Coding (SRNC) for multimedia transmission via erasure satellite channels. A performance comparison is presented against maximum distance separable (MDS) codes currently used in state-of-theart satellite transmission air interfaces, specifically Reed Solomon (RS) codes. Firstly, a theoretical analysis is presented for which we first develop a matricial erasure channel model. The theoretical analysis shows that both the RS and SRNC have, as expected, similar error correction performance over different packet erasure lengths for commonly used size fields. Secondly, we present an on-the-fly progressive algorithm for SRNC, which takes advantage of the inherent randomness of SRNC encoding. Thirdly, a performance comparison is presented for two different satellite scenarios: 1) DVB-S2/RCS railway scenario and 2) Broadband Global Area Network (BGAN) mobile scenario. We use real channel parameters for the first scenario and channel traces of video streaming sessions for the second scenario. Our simulation results confirm that both the RS codes and SNRC have the same packet recovery capabilities. However, for low coding rates, SRNC is shown to achieve up to 71% delay gain as compared to RS codes.
KW - Erasure Channel
KW - Forward Error Correction
KW - MDS codes
KW - Network Coding
M3 - Article
SN - 1867-8211
VL - 123 LNICST
SP - 199
EP - 210
JO - Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
JF - Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
ER -