TY - JOUR
T1 - Neonatal treatment with monosodium glutamate lastingly facilitates spreading depression in the rat cortex
AU - Lima, Cássia Borges
AU - Soares, Geórgia De Sousa Ferreira
AU - Vitor, Suênia Marcele
AU - Castellano, Bernardo
AU - Andrade Da Costa, Belmira Lara Da Silveira
AU - Guedes, Rubem Carlos Araújo
PY - 2013/9/17
Y1 - 2013/9/17
N2 - Aims Monosodium glutamate (MSG) is a neuroexcitatory amino acid used in human food to enhance flavor. MSG can affect the morphological and electrophysiological organization of the brain. This effect is more severe during brain development. Here, we investigated the electrophysiological and morphological effects of MSG in the developing rat brain by characterizing changes in the excitability-related phenomenon of cortical spreading depression (CSD) and microglial reaction. Main methods From postnatal days 1-14, Wistar rat pups received 2 or 4 g/kg MSG (groups MSG-2 and MSG-4, respectively; n = 9 in each group), saline (n = 10) or no treatment (naïve group; n = 5) every other day. At 45-60 days, CSD was recorded on two cortical points for 4 h. The CSD parameters velocity, and amplitude and duration of the negative potential change were calculated. Fixative-perfused brain sections were immunolabeled with anti-IBA-1 antibodies to identify and quantify cortical microglia. Key findings MSG-4 rats presented significantly higher velocities (4.59 ± 0.34 mm/min) than the controls (saline, 3.84 ± 0.20 mm/min; naïve, 3.71 ± 0.8 mm/min) and MSG-2 group (3.75 ± 0.10 mm/min). The amplitude (8.8 ± 2.2 to 11.2 ± 1.9 mV) and duration (58.2 ± 7.1 to 73.6 ± 6.0 s) of the negative slow potential shift was similar in all groups. MSG-treatment dose-dependently increased the microglial immunolabeling. Significance The results demonstrate a novel, dose-dependent action of MSG in the developing brain, characterized by acceleration of CSD and significant microglial reaction in the cerebral cortex. The CSD effect indicates that MSG can influence cortical excitability, during brain development, as evaluated by CSD acceleration. Data suggest caution when consuming MSG, especially in developing organisms. © 2013 Elsevier Inc.
AB - Aims Monosodium glutamate (MSG) is a neuroexcitatory amino acid used in human food to enhance flavor. MSG can affect the morphological and electrophysiological organization of the brain. This effect is more severe during brain development. Here, we investigated the electrophysiological and morphological effects of MSG in the developing rat brain by characterizing changes in the excitability-related phenomenon of cortical spreading depression (CSD) and microglial reaction. Main methods From postnatal days 1-14, Wistar rat pups received 2 or 4 g/kg MSG (groups MSG-2 and MSG-4, respectively; n = 9 in each group), saline (n = 10) or no treatment (naïve group; n = 5) every other day. At 45-60 days, CSD was recorded on two cortical points for 4 h. The CSD parameters velocity, and amplitude and duration of the negative potential change were calculated. Fixative-perfused brain sections were immunolabeled with anti-IBA-1 antibodies to identify and quantify cortical microglia. Key findings MSG-4 rats presented significantly higher velocities (4.59 ± 0.34 mm/min) than the controls (saline, 3.84 ± 0.20 mm/min; naïve, 3.71 ± 0.8 mm/min) and MSG-2 group (3.75 ± 0.10 mm/min). The amplitude (8.8 ± 2.2 to 11.2 ± 1.9 mV) and duration (58.2 ± 7.1 to 73.6 ± 6.0 s) of the negative slow potential shift was similar in all groups. MSG-treatment dose-dependently increased the microglial immunolabeling. Significance The results demonstrate a novel, dose-dependent action of MSG in the developing brain, characterized by acceleration of CSD and significant microglial reaction in the cerebral cortex. The CSD effect indicates that MSG can influence cortical excitability, during brain development, as evaluated by CSD acceleration. Data suggest caution when consuming MSG, especially in developing organisms. © 2013 Elsevier Inc.
KW - Brain development
KW - Brain electrophysiology
KW - Food flavoring agent
KW - Glutamatergic system
KW - Rat
U2 - 10.1016/j.lfs.2013.07.009
DO - 10.1016/j.lfs.2013.07.009
M3 - Article
SN - 0024-3205
VL - 93
SP - 388
EP - 392
JO - Life Sciences
JF - Life Sciences
IS - 9-11
ER -