Multivariate calibration model from overlapping voltammetric signals employing wavelet neural networks

A. Gutés, F. Céspedes, R. Cartas, S. Alegret, M. del Valle, J. M. Gutierrez, R. Muñoz

Producció científica: Contribució a revistaArticleRecercaAvaluat per experts

33 Cites (Scopus)

Resum

This work presents the use of a Wavelet Neural Network (WNN) to build the model for multianalyte quantification in an overlapped-signal voltammetric application. The Wavelet Neural Network is implemented with a feedforward multilayer perceptron architecture, in which the activation function in hidden layer neurons is substituted for the first derivative of a Gaussian function, used as a mother wavelet. The neural network is trained using a backpropagation algorithm, and the connection weights along with the network parameters are adjusted during this process. The principle is applied to the simultaneous quantification of three oxidizable compounds namely ascorbic acid, 4-aminophenol and paracetamol, that present overlapping voltammograms. The theory supporting this tool is presented and the results are compared to the more classical tool that uses the wavelet transform for feature extraction and an artificial neural network for modeling; results are of special interest in the work with voltammetric electronic tongues. © 2006 Elsevier B.V. All rights reserved.
Idioma originalAnglès
Pàgines (de-a)169-179
RevistaChemometrics and Intelligent Laboratory Systems
Volum83
Número2
DOIs
Estat de la publicacióPublicada - 15 de set. 2006

Fingerprint

Navegar pels temes de recerca de 'Multivariate calibration model from overlapping voltammetric signals employing wavelet neural networks'. Junts formen un fingerprint únic.

Com citar-ho