Multi-script text extraction from natural scenes

Producció científica: Capítol de llibreCapítolRecercaAvaluat per experts

86 Cites (Scopus)

Resum

Scene text extraction methodologies are usually based in classification of individual regions or patches, using a priori knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organisation through which text emerges as a perceptually significant group of atomic objects. Therefore humans are able to detect text even in languages and scripts never seen before. In this paper, we argue that the text extraction problem could be posed as the detection of meaningful groups of regions. We present a method built around a perceptual organisation framework that exploits collaboration of proximity and similarity laws to create text-group hypotheses. Experiments demonstrate that our algorithm is competitive with state of the art approaches on a standard dataset covering text in variable orientations and two languages.

Idioma originalAnglès
Títol de la publicacióProceedings of the International Conference on Document Analysis and Recognition, ICDAR
Pàgines467-471
Nombre de pàgines5
DOIs
Estat de la publicacióPublicada - 2013

Sèrie de publicacions

NomProceedings of the International Conference on Document Analysis and Recognition, ICDAR
Editor-
ISSN (imprès)1520-5363

Fingerprint

Navegar pels temes de recerca de 'Multi-script text extraction from natural scenes'. Junts formen un fingerprint únic.

Com citar-ho